Research Papers: Contact Mechanics

The Effect of Rigid Particle on Friction Properties of Automotive Disk Brake Based on a Local Modeling

[+] Author and Article Information
Zhishuai Wan, Yingchun Shan

School of Transportation Science
and Engineering,
Beihang University,
Beijing 100191, China

Xiandong Liu

School of Transportation Science
and Engineering,
Beihang University,
Beijing 100191, China
e-mail: liuxiandong@buaa.edu.cn

Tian He

School of Transportation
Science and Engineering,
Beihang University,
Beijing 100191, China

Haixia Wang

BAIC Motor Corporation, Ltd.,
Beijing Automotive Technology Center,
Beijing 101300, China

Gang (Sheng) Chen

College of IT and Engineering,
Marshall University,
Huntington, WV 25755

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received March 4, 2018; final manuscript received November 13, 2018; published online January 25, 2019. Assoc. Editor: Noel Brunetiere.

J. Tribol 141(4), 041403 (Jan 25, 2019) (10 pages) Paper No: TRIB-18-1102; doi: 10.1115/1.4042268 History: Received March 04, 2018; Revised November 13, 2018

To quantify the friction mechanism of the interface of the brake disk-pad pair, an analytical model of coefficient of friction (COF) is established from the perspective of contact mechanics. The model takes into account the surface topography of the disk, mechanical properties of brake pair, and the ingredients of the brake pad. As the reinforcing fillers, the effect of particle size and amount on the COF are analyzed, and the simulation results are consistent with the experimental data. The model and results presented here offer some insight into real brake pair design.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Hinrichs, R. , Soares, M. R. F. , Lamb, R. G. , Soares, M. R. F. , and Vasconcellos, M. A. Z. , 2011, “ Phase Characterization of Debris Generated in Brake Pad Coefficient of Friction Tests,” Wear, 270(7–8), pp. 515–519. [CrossRef]
Laguna-Camacho, J. R. , Juárez-Morales, G. , Calderón-Ramón, C. , Velázquez-Martínez, V. , Hernández-Romero, I. , Méndez-Méndez, J. V. , and Vite-Torres, M. , 2015, “ A Study of the Wear Mechanisms of Disk and Shoe Brake Pads,” Eng. Fail. Anal., 56, pp. 348–359. [CrossRef]
Menapace, C. , Leonardi, M. , Matějka, V. , Gialanella, S. , and Straffelini, G. , 2018, “ Dry Sliding Behavior and Friction Layer Formation in Copper-Free Barite Containing Friction Materials,” Wear, 398–399, pp. 191–200.
Heussaff, A. , Dubar, L. , Tison, T. , Watremez, M. , and Nunes, R. F. , 2012, “ A Methodology for the Modelling of the Variability of Brake Lining Surfaces,” Wear, 289, pp. 145–159. [CrossRef]
Ostermeyer, G. P. , and Müller, M. , 2006, “ Dynamic Interaction of Friction and Surface Topography in Brake Systems,” Tribol. Int., 39(5), pp. 370–380. [CrossRef]
Barros, L. Y. , Neis, P. D. , Ferreira, N. F. , Pavlak, R. P. , Masotti, D. , Matozo, L. T. , Sukumaran, J. , Baets, P. D. , and Andó, M. , 2016, “ Morphological Analysis of Pad-Disc System During Braking Operations,” Wear, 352–353, pp. 112–121. [CrossRef]
Singh, T. , Patnaik, A. , Chauhan, R. , and Rishiraj, A. , 2017, “ Assessment of Braking Performance of Lapinus-wollastonite Fiber Reinforced Friction Composite Materials,” J. King. S. Univ. Eng. Sci., 29, pp. 183–190.
Cho, K. H. , Jang, H. , Hong, Y. S. , Kim, S. J. , Basch, R. H. , and Fash, J. W. , 2008, “ The Size Effect of Zircon Particles on the Friction Characteristics of Brake Lining Materials,” Wear, 264(3–4), pp. 291–297. [CrossRef]
Kim, S. S. , Hwang, H. J. , Shin, M. W. , and Jang, H. , 2011, “ Friction and Vibration of Automotive Brake Pads Containing Different Abrasive Particles,” Wear, 271(7–8), pp. 1194–1202. [CrossRef]
Ma, Y. N. , Martynková, G. S. , Valášková, M. , Matějka, V. , and Lu, Y. F. , 2008, “ Effects of ZrSiO4 in Non-Metallic Brake Friction Materials on Friction Performance,” Tribol. Int., 41(3), pp. 166–174. [CrossRef]
Gbadeyan, O. J. , Kanny, K. , and Pandurangan, M. T. , 2018, “ Tribological, Mechanical, and Microstructural of Multiwalled Carbon Nanotubes/Short Carbon Fiber Epoxy Composites,” ASME J. Tribol., 140(2), p. 022002. [CrossRef]
Alemani, M. , Gialanella, S. , Straffelini, G. , Ciudin, R. , Olofsson, U. , Perricone, G. , and Metinoz, I. , 2017, “ Dry Sliding of a Low Steel Friction Material Against Cast Iron at Different Loads: Characterization of the Friction Layer and Wear Debris,” Wear, 376–377, pp. 1450–1459. [CrossRef]
Kchaou, M. , Sellami, A. , Elleuch, R. , and Singh, H. , 2013, “ Friction Characteristics of a Brake Friction Material Under Different Braking Conditions,” Mater. Des., 52, pp. 533–540. [CrossRef]
Mirzababaei, S. , and Filip, P. , 2017, “ Impact of Humidity on Wear of Automotive Friction Materials,” Wear, 376–377, pp. 717–726. [CrossRef]
Lee, W. K. , and Jang, H. , 2013, “ Moisture Effect Velocity Dependence Sliding Friction Brake Friction Materials,” Wear, 306, pp. 17–21. [CrossRef]
Gyimah, G. K. , Huang, P. , and Chen, D. , 2014, “ Dry Sliding Wear Studies of Copper-Based Powder Metallurgy Brake Materials,” ASME J. Tribol., 136, p. 041601. [CrossRef]
Thornton, R. , Slatter, T. , Jones, A. H. , and Lewis, R. , 2011, “ The Effects of Cryogenic Processing on the Wear Resistance of Grey Cast Iron Brake Discs,” Wear, 271(9–10), pp. 2386–2395. [CrossRef]
Gao, H. M. , 2007, Mineral Composite Friction Material, Chemical Industry Press, Beijing, China, p. 222.
Yoon, S. W. , Shin, M. W. , Lee, W. G. , and Jang, H. , 2012, “ Effect of Surface Contact Conditions on the Stick-Slip Behavior of Brake Friction Material,” Wear, 294–295, pp. 305–312. [CrossRef]
Archard, J. F. , 1957, “ Elastic Deformation and the Laws of Friction,” Proc. R. Soc. London A, 243(1233), pp. 190–205. [CrossRef]
Johnson, K. L. , 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK, p. 111.
Greenwood, J. A. , and Williamson, J. B. P. , 1966, “ Contact of Nominally Flat Surfaces,” Proc. R. Soc. London Ser. A, 295(1442), pp. 300–319. [CrossRef]
Chang, W. R. , Etsion, I. , and Bogy, D. B. , 1987, “ An Elastic-Plastic Model for the Contact of Rough Surfaces,” ASME J. Tribol., 109(2), pp. 257–263. [CrossRef]
Polycarpou, A. , and Etsion, I. , 1999, “ Analytical Approximations in Modeling Contacting Rough Surfaces,” ASME J. Tribol., 121(2), pp. 234–239. [CrossRef]
Kogut, L. , and Etsion, I. , 2002, “ Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat,” ASME J. Appl. Mech., 69(5), pp. 657–662. [CrossRef]
Zhao, Y. , Maletta, D. M. , and Chang, L. , 2000, “ An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow,” ASME J. Tribol., 122(1), pp. 86–93. [CrossRef]
Waddad, Y. , Magnier, V. , Dufrénoy, P. , and Saxcé, G. D. , 2016, “ A Multiscale Method for Frictionless Contact Mechanics of Rough Surfaces,” Tribol. Int., 96, pp. 109–121. [CrossRef]
Huang, P. , Guo, D. , and Wen, S. Z. , 2013, Interface Mechanics, Tsinghua University Press, Beijing, China, p. 40.
Popov, V. L. , 2010, Contact Mechanics and Friction Physical Principles and Applications, Springer, Berlin, p. 17.
Bowden, F. P. , and Tabor, D. , 1954, The Friction and Lubrication of Solids, Oxford University Press, Oxford, UK, p. 120.
Moore, D. D. , 1975, Principles and Application of Tribology, Pergamon Press, Oxford, UK, p. 30.
Wei, J. B. , 2016, “ Studying Micro-Structure Constitutive Theory and Damage Analysis of Particulate-Reinforced Composites,” Ph.D. dissertation, Yanshan University, Qinhuangdao, Hebei, China.
Wang, D. , 2015, “ Study on the Numerical Simulation of Particle Reinforced Titanium Matrix Composite's Mechanical Properties,” Ph.D. dissertation, Beijing Institute of Technology, Beijing, China.
Yang, H. , 2012, “ Micromechanics of Particulate Reinforced Composites,” Ph.D. dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, China. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960048664.pdf
Sun, C. , 2012, “ An Investigation of the Microstructures and Mechanical Properties of SiC Particles Reinforced Aluminum Matrix Composites,” Ph.D. dissertation, Central South University, Nanjing, Jiangsu, China.
Zhu, W. T. , Fu, Y. W. , Li, H. J. , Fei, J. , and Zhang, Z. M. , 2012, “ Effect of CaSiO4 on Resin-Based Friction Materials,” Lubr. Eng., 37–11, pp. 45–50.
Zhang, B. Y. , and Yao, G. X. , 2013, “ Effect of ZrSiO4 and Al2O3 on Friction Properties of Brake Material,” FRP/CM, 7, pp. pp. 32–36.
Chen, H. Y. , 2003, “ Study on Friction Properties of Fiber Reinforced Resin-Based Friction Materials,” Ph.D. dissertation, Shan Dong University, Jinan, China.


Grahic Jump Location
Fig. 1

Brake pad microstructures: (a) wear debris and (b) surface of pad

Grahic Jump Location
Fig. 2

Brake disk surface topography

Grahic Jump Location
Fig. 3

Brake disk profile

Grahic Jump Location
Fig. 4

Multilayer geometry of the brake disk

Grahic Jump Location
Fig. 5

Contact model of the brake pair: (a) schematic of real disk surface and (b) the multilayer geometric model of the disk

Grahic Jump Location
Fig. 6

Contact analysis of a single peak

Grahic Jump Location
Fig. 7

Pressure distribution (θ=45 deg)

Grahic Jump Location
Fig. 8

Brake pad microstructure and distribution of rigid particles

Grahic Jump Location
Fig. 9

Contact between rigid particle and brake disk

Grahic Jump Location
Fig. 10

Schematic of the contact of brake pair

Grahic Jump Location
Fig. 11

The composition of the COF (radius changes)

Grahic Jump Location
Fig. 12

Effect of radius of rigid particle on COF [18]

Grahic Jump Location
Fig. 13

The composition of the COF (dosage changes)

Grahic Jump Location
Fig. 14

Effects of ZrSiO4 and CaSiO4 concentrations on COF [10,36]

Grahic Jump Location
Fig. 15

The contact diagram of the rigid particle



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In