0
RESEARCH PAPERS

Material Response to Rolling Contact Loading

[+] Author and Article Information
A. P. Voskamp

Fatigue Investigations Department, SKF Engineering and Research Centre, Nieuwegein, The Netherlands

J. Tribol 107(3), 359-364 (Jul 01, 1985) (6 pages) doi:10.1115/1.3261078 History: Received March 07, 1984; Online October 29, 2009

Abstract

The material response to rolling contact loading has been analyzed using quantitative X-ray diffraction methods. This has led to the discovery of preferred crystalline orientation in very narrow subsurface regions of endurance-tested 6309 deep groove ball bearing inner rings. The high hydrostatic pressure field, derived from the load-induced three-dimensional stress field in each Hertzian contact load cycle, allows substantial microplastic deformation to be accommodated in the subsurface layers. This microplastic deformation is accompanied by transformation of retained austenite, decay of martensite and the development of texture and residual stresses, one of which is a subsurface tensile stress in a direction normal to the surface. Both the preferred orientation and the tensile residual stress allow for crack propagation parallel to the rolling contact surface. Based on these findings, an outline of a qualitative model for rolling contact fatigue is presented.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In