0
RESEARCH PAPERS

Stability of Squeeze Film Damped Multi-Mass Flexible Rotor Bearing Systems

[+] Author and Article Information
L. J. McLean

Royal Military College, Duntroon, Australia

E. J. Hahn

University of New South Wales, Kensington, Australia

J. Tribol 107(3), 402-409 (Jul 01, 1985) (8 pages) doi:10.1115/1.3261094 History: Received May 01, 1984; Online October 29, 2009

Abstract

A technique is presented for investigating the stability of and the degree of damping in the circular synchronous orbit equilibrium solutions pertaining to radially symmetric multi-mass flexible rotor bearing systems. It involves the analysis of appropriate linearized perturbation equations about the equilibrium solutions and is applicable to systems with several squeeze film dampers. For a system with a single damper, stability threshold maps, independent of unbalance distribution, may be found in terms of the same damper parameters and operating conditions as the equilibrium solutions, thereby allowing for damper design and performance monitoring. The technique is illustrated for a simple symmetric four degree of freedom flexible rotor with an unpressurized damper. This example shows the utility of zero frequency stability maps for delineating multiple solution possibilities and that for low (in this case of the order of 0.06 or lower) bearing parameters, the introduction of an unpressurized squeeze film damper may promote instability in an otherwise stable system.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In