0
RESEARCH PAPERS

Effect of a Surface Film on the Surface Temperature of a Rotating Cylinder

[+] Author and Article Information
B. Gecim, W. O. Winer

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga. 30332

J. Tribol 108(1), 92-97 (Jan 01, 1986) (6 pages) doi:10.1115/1.3261150 History: Received August 28, 1984; Online October 29, 2009

Abstract

Solution to the steady heat conduction problem of a rotating layered cylinder is presented. The governing differential equations (for the film and the substrate) are solved by using an integral transform technique. It is shown that the presence of a surface film measured in micrometers can substantially change the level of the surface temperature. The effect of the surface film on the surface temperature depends on: respective thermal properties of the film and the substrate; relative surface speed; heat source (contact) size; and surface film thickness. However, the range in which the effect of the film on the surface temperature is dependent on these parameters is limited. Outside this range (i.e., thin film/low speed or thick film/high speed) the surface temperature rise is determined by the thermal properties of the substrate, or by the properties of the film alone, respectively. Hence, outside this range, a further change in the film thickness does not influence the surface temperature rise. Dimensionless plots showing the change in surface temperature rise as a function of material thermal properties, surface speed, heat source size, and film thickness are presented. Behavior for specific material combinations are also presented. The present information can be utilized to predict the layer effect on the partition of heat between the layered cylinders.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In