Predicting Microfracture in Ceramics Via a Microcontact Model

[+] Author and Article Information
J. I. McCool

SKF Engineering & Research, SKF Industries, Inc., King of Prussia, PA 19406-1352

J. Tribol 108(3), 380-385 (Jul 01, 1986) (6 pages) doi:10.1115/1.3261209 History: Received February 28, 1985; Online October 29, 2009


The point of view is taken that for ceramics, cone cracking on the microscale assumes the same role as plastic asperity deformation in metal materials, namely, as the agent causing stress raising micropits which precipitate surface fatigue. Empirical fracture data are interpreted in the context of published fracture mechanics analyses of cone cracking in static and sliding contact and used within the Greenwood-Williamson stochastic microcontact model to predict the relative likelihood of cone cracking when a rough flat ceramic contacts a smooth ceramic flat of the same material. The Greenwood-Williamson model is reviewed and its predictions are shown, for the steel and ceramic surfaces considered, to compare favorably to the more general anisotropic microcontact model ASPERSIM. A microfracture index analogous to the Greenwood-Williamson plasticity index, is shown to be a determinant of the ability of a surface to resist cone cracking.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In