Friction Induced Strengthening Mechanisms of Magnesia Partially Stabilized Zirconia

[+] Author and Article Information
V. Aronov

Mechanical Engineering Department, Illinois Institute of Technology, Chicago, Ill. 60616

J. Tribol 109(3), 531-536 (Jul 01, 1987) (6 pages) doi:10.1115/1.3261496 History: Received February 15, 1986; Online October 29, 2009


Experimental investigation of the wear behavior of Magnesia Partially Stabilized Zirconia (Mg-PSZ) rubbed against itself showed that up to three orders of magnitude increase in the wear resistance can be achieved in a particular temperature range that depends on both the sliding speed and the ambient temperature. XRD analysis revealed that thermally induced phase transformation takes place on the frictional interface. Surface analysis show that wear rates at maximum wear resistance are controlled by the crack generation kinetics rather than by crack propagation kinetics. The plastic strain before fracture varies with temperature. The maximum plastic strain was observed at the temperature of maximum wear resistance. A phenomenological model is presented that provides an explanation for the wear temperature behavior of Mg-PSZ. The model is based on the following chain of events that takes place on the frictional interface: spatial overheating of the surface areas, phase transformation of the overheated areas, cooling, volume expansion, and development of a compressive stress field in the near surface volumes.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In