0
RESEARCH PAPERS

Thermal Instability of Sliding and Oscillations Due to Frictional Heating Effect

[+] Author and Article Information
I. L. Maksimov

Francis Bitter National Magnet Laboratory and Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139

J. Tribol 110(1), 69-72 (Jan 01, 1988) (4 pages) doi:10.1115/1.3261577 History: Received February 16, 1987; Online October 29, 2009

Abstract

The stability of sliding has been studied, taking into account frictional heating effect and friction coefficient dependence upon the interface temperature and sliding velocity. The collective—thermal and mechanical—sliding instability has been found to exist; instability emergence conditions and dynamics (both in linear and nonlinear stages) have been determined. It is shown that both the threshold and the dynamics of thermofrictional instability differ qualitatively from the analogous characteristics of “stick-slip” phenomenon. Namely, the oscillational instability behavior due to the energy exchange between thermal and mechanical modes has been found to occur under certain initial conditions; the velocities range has been determined for which collective sliding instability may occur whereas the stick-slips would be not possible. The nonlinear analysis of instability evolution has been carried out for pairs with the negative thermal-frictional sliding characteristics, the final stage of sliding dynamics has been described. It is found that stable thermofrictional oscillations can occur on the nonlinear stage of sliding instability development; the oscillations frequency and amplitude have been determined. The possibility has been discussed of the experimental observation of new dynamical sliding phenomena at low temperatures.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In