An Analysis of Speed, Temperature, and Performance Characteristics of Automotive Drum Brakes

[+] Author and Article Information
A. J. Day

Postgraduate School of Mechanical and Manufacturing Systems Engineering, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom

J. Tribol 110(2), 298-303 (Apr 01, 1988) (6 pages) doi:10.1115/1.3261604 History: Received February 15, 1987; Online October 29, 2009


Finite element analysis techniques have been used to simulate braking friction in a large, heavy duty twin leading shoe brake. Temperature, lining wear and pressure distributions, and thermal distortions of the brake drum which are generated during high pressure brake applications from two different road speeds have been predicted and compared with experimental data. Two different types of brake lining, a conventional asbestos-based resin-bonded composite friction material and a heavy duty resin-bonded semi-metallic type of friction material have been studied in this way, and it is shown that observed in-stop and speed-related brake performance are strongly dependent upon the rate of frictional energy transformation at the lining/drum interface, which defines the development of interface transient temperatures. By relating the measured friction characteristic of the friction material to predicted lining friction surface temperatures good correlation between predicted and actual brake performance is demonstrated.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In