Film Thickness Calculations in Elastohydrodynamically Lubricated Circular Contacts, Using a Multigrid Method

[+] Author and Article Information
A. A. Lubrecht, C. H. Venner, W. E. ten Napel, R. Bosma

Twente University, Enschede, The Netherlands

J. Tribol 110(3), 503-507 (Jul 01, 1988) (5 pages) doi:10.1115/1.3261657 History: Received February 28, 1987; Online October 29, 2009


Minimum, central and average film thicknesses have been calculated for the isothermal E.H.L. point contact case, for a variety of load, rolling speed, and material parameters. The equations governing this problem were solved using a Multigrid method. This technique offers the possibility to work with a very fine grid, obtaining detailed and accurate solutions, at the cost of moderate cpu times and storage requirements, on medium size computers. Computations for low loads, requiring a large inlet zone, have been carried out using local grid refinements. The fluid in these calculations is assumed to be compressible and its viscosity-pressure behavior is described by either the Roelands equation, or the Barus equation. The ratio between the calculated minimum film thickness and the central value varied with the parameters governing the problem, but for low loads, a value of 3/4 was obtained. The film thickness behavior at these low loads can be accurately described in terms of the minimum film thickness. For higher loads, however, a description based on a film thickness, averaged over the Hertzian contact, is more appropriate to be compared with the asymptotic solution (Ertel, Grubin).

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In