Sliding Behavior of Alumina/Nickel and Alumina/Nickel Aluminide Couples at Room and Elevated Temperature

[+] Author and Article Information
Peter J. Blau, Charles E. DeVore

Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tenn. 37831-6063

J. Tribol 110(4), 646-652 (Oct 01, 1988) (7 pages) doi:10.1115/1.3261707 History: Received March 16, 1988; Online October 29, 2009


Nickel aluminide alloys are ordered intermetallic compounds which show promise for elevated temperature applications, some of which involve sliding contact. The present investigation was conducted to develop an initial understanding of the unlubricated sliding behavior of a nickel aluminide alloy at room and elevated temperatures. In particular, the variations in the friction coefficient and the wear track morphology during the break-in stage and subsequent transitions were studied. Pin-on-disk experiments were conducted at room temperature and at 650° C (923° K) in air using fixed 9.5 mm diameter polycrystalline alumina balls as the pin material. To provide a comparison in behavior, nickel (Ni-200) disks were tested under the same conditions. The sliding friction coefficient of alumina on nickel aluminide was considerably higher than that for alumina on nickel at room temperature, but it was only slightly higher at 650° C. The wear was similar for both materials at room temperature, but the nickel aluminide exhibited relatively mild wear at 650° C, displaying less severe surface damage than the nickel. Work on identifying key friction and wear mechanisms and on evaluating the temperature limitations for future applications will continue.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In