0
RESEARCH PAPERS

A Continuous Boiling Model for Face Seals

[+] Author and Article Information
J. A. Yasuna, W. F. Hughes

Mechanical Engineering Department, Carnegie-Mellon University, Pittsburgh, PA 15213

J. Tribol 112(2), 266-274 (Apr 01, 1990) (9 pages) doi:10.1115/1.2920252 History: Received March 24, 1989; Online June 05, 2008

Abstract

Mechanical face seals with phase change have extensive engineering applications, yet little theory exists to predict dynamic and thermodynamic behavior. At present, numerical solutions exist for two operating extremes—for low leakage laminar flow where boiling is assumed to occur discretely, and for high leakage, turbulent adiabatic flow. A model is presented herein which allows for continuous boiling, and considers thermal convection effects in laminar flow. Sample calculations and results are compared to the discrete boiling model, and as leakage increases and convection effects become more important boiling may occur over a large portion of the seal face. It is shown that contrary to the discrete boiling model, there may exist a narrow range of stable or bistable operation even when saturation conditions exist near the seal inlet. Instability will invariably occur however if the seal is sufficiently perturbed. This analysis is intended to explain some of the anomalous behavior observed in typical sealing applications, and to act as a guide for experimental verification.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In