Accounting for Transducer Dynamics in the Measurement of Friction

[+] Author and Article Information
J. L. Streator, D. B. Bogy

Computer Mechanics Laboratory, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720

J. Tribol 114(1), 86-94 (Jan 01, 1992) (9 pages) doi:10.1115/1.2920873 History: Received June 25, 1990; Revised June 01, 1991; Online June 05, 2008


In many studies of sliding interfaces, the measurement of friction is complicated by quasi-harmonic vibrations of the transducer system. An analytical technique is introduced which accounts for the dynamic characteristics of a force transducer under periodic excitation, and is used to compute the forcing function in the sliding interface. The force transducer is modeled as an elastic cantilever-beam with an attached rigid mass. The forcing function is obtained by solving the time-dependent, fourth-order partial differential equation of Euler-Bernoulli beam theory. The solution is facilitated by the application of Fourier series expansions in time and eigenfunction expansions in space. Results of the method are compared to previous analyses of friction-induced vibration in which the elasticity of the transducer is modeled as a simple spring and the rigid body as a lumped mass, leading to a single degree-of-freedom (DOF) governing equation. It is found that a single DOF calculation based on instantaneous measurement of displacement agrees surprisingly well with the results of the Euler-Bernoulli analysis. A single DOF model based on instantaneous measurement of strain and a static displacement-strain calibration factor agrees well with the Euler-Bernoulli analysis for a low frequency range but deviates at higher frequencies.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In