0
RESEARCH PAPERS

The Effect of Tribofilm Formation and Humidity on the Friction and Wear Properties of Ceramic Materials

[+] Author and Article Information
K. Komvopoulos, H. Li

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Tribol 114(1), 131-140 (Jan 01, 1992) (10 pages) doi:10.1115/1.2920851 History: Received February 13, 1991; Revised June 10, 1991; Online June 05, 2008

Abstract

The processes of tribofilm formation and disruption and the predominant tribo-mechanisms of unlubricated ceramic materials were investigated experimentally. Sliding experiments in humidity controlled atmospheres revealed that the formation of interfacial tribofilms significantly affects the steady-state friction and wear properties of ceramics. Scanning electron microscopy and various composition analysis techniques demonstrated that although tribochemical reactions might occur, the principal mechanisms of tribofilm formation were the generation, agglomeration, and compaction of fine wear debris produced from both sliding surfaces. The tribofilms exhibited different tribological characteristics, depending on their elemental compositions and the humidity. For all the ceramic pairs tested, the steady-state coefficients of friction decreased with relative humidity. In contrast to the conventional fracture toughness approach, surface profilometry and microscopy studies showed that the highest wear rates were encountered with the toughest ceramic. Plowing grooves parallel to the direction of sliding, fine wear debris of round and cylindrical shapes, microcracking, and localized delamination of the tribofilms were identified. Microscopic observations suggested that damage of the subsurface material adjacent to the interface of the tribofilms was immeasurable. Qualitative comparison of the topographical features of worn surfaces indicated that, depending on the humidity and the type of ceramic, microplasticity, microfracture, and delamination of the tribofilms were the prevailing steady-state tribomechanisms.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In