0
RESEARCH PAPERS

Magnetic Head-Media Interface Temperatures—Part 3: Application to Rigid Disks

[+] Author and Article Information
B. Bhushan

IBM Research Division, Almaden Research Center, San Jose, Calif. 95120-6099

J. Tribol 114(3), 420-430 (Jul 01, 1992) (11 pages) doi:10.1115/1.2920901 History: Received March 29, 1991; Revised June 18, 1991; Online June 05, 2008

Abstract

A thermal analysis has been used to predict transient temperature rises at a typical head-particulate-disk interface and a head-thin-film-disk interface. Thermal properties of the various thin-films used in the construction of magnetic rigid disks are measured. Average and maximum transient temperature rises for the assumed head-particulate-disk interface over the contact area are 34 and 44°C, respectively for an Al2 O3 -TiC slider. If the exposed magnetic particles or alumina particles contact the slider surface, the transient temperature rise could be more than 1000°C. Average and maximum transient temperature rises for the assumed head-thin-film-disk interface over the contact area are 56 and 81°C, respectively for an Al2 O3 -TiC slider and 77 and 110°C, respectively for an Mn-Zn ferrite slider. The durations of asperity contact generally are less than 100 ns. The thermal gradients perpendicular to the sliding surfaces are very large (a temperature drop of 90 percent in a depth of typically less than a contact diameter or less than a micron).

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In