High-Speed Frictional Heating of an Elastic Medium With a Near-Surface Horizontal Line Crack

[+] Author and Article Information
T. Y. Chen

John Crane, Inc., Morton Grove, IL

Frederick D. Ju

University of New Mexico, Albuquerque, NM

J. Tribol 115(1), 56-60 (Jan 01, 1993) (5 pages) doi:10.1115/1.2920986 History: Received February 17, 1992; Revised July 01, 1992; Online June 05, 2008


This paper studies the effect of high-speed frictional heating over the surface of an elastic material, which has a near surface horizontal line crack. The frictional heating is represented by a high-speed moving heat source, since the mechanical loading effect is much smaller than the thermal effect in the resulting stress field. Finite difference methods are employed to compute the temperature field and the displacement field, taking into consideration the characteristic singularity at the crack tip. The temperature field solutions are first computed, using the method of heat balance. The thermo-mechanical solutions follow with particular interest in the vicinity of the line crack as represented by the stress intensity factors at the crack tip. It was found that both the open mode and the shear mode occur, as a result of the excitation of the moving thermal load. The paper also presents effects on the stress intensity factors from varying the thermal and the mechanical properties of the medium, and the location of the line crack from the wear surface. The depth at which the maximum thermal stress occurs is an exponential function of the Peclet number, as in the cases when there is no defect in the wear material and when there is a near surface cavity. Albeit, the “critical depth” reduces with increasing Peclet number and severity of the defect.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In