0
RESEARCH PAPERS

Compliant Foil Bearing Structural Stiffness Analysis—Part II: Experimental Investigation

[+] Author and Article Information
C.-P. Roger Ku, Hooshang Heshmat

Mechanical Technology Incorporated, Latham, New York

J. Tribol 115(3), 364-369 (Jul 01, 1993) (6 pages) doi:10.1115/1.2921644 History: Received February 18, 1992; Revised May 01, 1992; Online June 05, 2008

Abstract

This paper describes the second part of an investigation into the mechanism of deformation of the corrugated foil (bump foil) strips used in compliant surface foil bearings. In the earlier work, a theoretical model was developed to predict the structural characteristics of bump foil strips under various loads, including the effects of the friction forces between the compliant elements, local interaction forces, load distribution profiles, and bump configurations. In the experiments described here in, two-dimensional deflections of bump foils were recorded via an optical tracking system for a wide range of operating conditions to verify the feasibility of the theoretical model. Test results corroborate the theoretical model for the linear regions of load and the deflection parameters. The effects of the bearing design parameters, such as bump configuration, load profile, and surface coating and lubricant, on the structural characteristics of the bump foil strip were investigated. In addition, the source and mechanism of nonlinear behavior of the bump foil strips under light load conditions were examined, and more effective methods of achieving both Coulomb damping and optimum structural compliance were investigated. An understanding of the analytical and semi-empirical relations resulting from this work offers designers the potential for enhancing the design of high-performance compliant foil bearings.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In