Turbulence Measurements of High Shear Flow Fields in a Turbomachine Seal Configuration

[+] Author and Article Information
G. L. Morrison, R. E. DeOtte, H. D. Thames

Turbomachinery Laboratory, Mechanical Engineering Department, Texas A&M University, College Station, Texas 77845-3123

J. Tribol 115(4), 670-677 (Oct 01, 1993) (8 pages) doi:10.1115/1.2921692 History: Received August 05, 1992; Revised December 07, 1992; Online June 05, 2008


The mean velocity and Reynolds stress tensor throughout a whirling annular seal are presented. The data were collected with a three-dimensional laser Doppler velocimeter using phase averaging. Two axial flow conditions (Re = 12,000 and 24,000) were studied at one shaft speed (Ta = 6,600). The eccentricity and whirl ratios were 50 percent and 100 percent, respectively. There is a region of high axial momentum at the inlet on the pressure side of the clearance that migrates around the seal to the suction side at the exit. The normalized axial momentum in this region is higher in the low Reynolds number case due to an axial recirculation zone that occurs on the suction side of the rotor at the inlet. The recirculation zone does not occur in the high Reynolds number case. At both Reynolds numbers there is a recirculation zone on the rotor surface in the pressure side of the inlet. This recirculation zone extends from 20 to 200 deg past the rotor zenith in the tangential direction, and is one third of a clearance wide radially. The high Reynolds number circulation zone is 1.5 mean clearances long, while the low Reynolds number zone extends two mean clearances downstream. When compared to previous studies, it is apparent that the tangential momentum is no greater for a seal with whirl than for one without if other parameters are constant. Areas of high tangential momentum occur in the clearance where the axial momentum is low. Average exit plane tangential velocities in the low Reynolds number case are 1.5 times greater than those in the other flow case. These results are in general agreement with predictions made by other investigators.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In