Roughness Influence on Turbulent Flow Through Annular Seals

[+] Author and Article Information
Victor Lucas

Laboratoire de Mécanique des Solides, URA CNRS Université de Poitiers, France

Sterian Danaila

Institutul Politechnic Bucuresti, Bucuresti, Rumania

Olivier Bonneau, Jean Frêne

Laboratoire de Mécanique des Solides, URA CNRS Université de Poitiers, Poitiers, France

J. Tribol 116(2), 321-328 (Apr 01, 1994) (8 pages) doi:10.1115/1.2927219 History: Received February 03, 1993; Revised June 25, 1993; Online June 05, 2008


This paper deals with an analysis of turbulent flow in annular seals with rough surfaces. In this approach, our objectives are to develop a model of turbulence including surface roughness and to quantify the influence of surface roughness on turbulent flow. In this paper, in order to simplify the analysis, the inertial effects are neglected. These effects will be taken into account in a subsequent work. Consequently, this study is based on the solution of Reynolds equation. Turbulent flow is solved using Prandtl’s turbulent model with Van Driest’s mixing length expression. In Van Driest’s model, the mixing length depends on wall shear stress. However there are many numerical problems in evaluating this wall shear stress. Therefore, the goal of this work has been to use the local shear stress in the Van Driest’s model. This derived from the work of Elrod and Ng concerning Reichardt’s mixing length. The mixing length expression is then modified to introduce roughness effects. Then, the momentum equations are solved to evaluate the circumferential and axial velocity distributions as well as the turbulent viscosity μ1 (Boussinesq’s hypothesis) within the film. The coefficients of turbulence kx and kz , occurring in the generalized Reynolds’ equation, are then calculated as functions of the flow parameters. Reynolds’ equation is solved by using a finite centered difference method. Dynamic characteristics are calculated by exciting the system numerically, with displacement and velocity perturbations. The model of Van Driest using local shear stress and function of roughness has been compared (for smooth seals) to the Elrod and Ng theory. Some numerical results of the static and dynamic characteristics of a rough seal (with the same roughness on the rotor as on the stator) are presented. These results show the influence of roughness on the dynamic behavior of the shaft.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In