0
RESEARCH PAPERS

Observations of Wear of Abrasive-Waterjet Nozzle Materials

[+] Author and Article Information
M. Hashish

QUEST Integrated, Inc., 21414-68th Avenue South, Kent, WA 98032

J. Tribol 116(3), 439-444 (Jul 01, 1994) (6 pages) doi:10.1115/1.2928861 History: Received February 02, 1993; Revised December 14, 1993; Online June 05, 2008

Abstract

This paper addresses the wear characteristics of the mixing tube of an abrasive-waterjet nozzle. An effective nozzle material should possess high values of both hardness and toughness. The mixing tube, which is where the abrasives are mixed, accelerated, and focused with the high-pressure waterjet, is the component in the abrasive-water jet nozzle that receives the greatest wear. Accelerated wear tests were conducted on relatively soft (steel) mixing tubes using a typical soft abrasive (garnet sand) and on harder (tungsten carbide) tubes using a harder abrasive material (aluminum oxide). A wide range of candidate tool materials, including several carbides and ceramics, was also tested using actual machining parameters. The tungsten carbide grades exhibited greater longevity than the harder ceramics, such as boron carbide, when garnet abrasives were used. The reverse trend was observed with aluminum oxide abrasives. Wear trends suggest that the wear mechanisms along the mixing tube change from erosion by particle impact at the upstream sections to abrasion at the downstream sections. Linear cutting tests were also conducted on several candidate nozzle materials to gain more information related to wear performance. It was found, for example, that the binder in tungsten carbide, which controls these properties, is a critical factor that also controls the lifetime of tungsten carbide mixing tubes.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In