Tribological Behavior of Amorphous Hydrogenated Carbon Films on Silicon

[+] Author and Article Information
A. K. Gangopadhyay, W. C. Vassell, M. A. Tamor, P. A. Willermet

Research Laboratory, Ford Motor Company, Dearborn, MI 48121

J. Tribol 116(3), 454-462 (Jul 01, 1994) (9 pages) doi:10.1115/1.2928865 History: Received August 04, 1992; Revised June 17, 1993; Online June 05, 2008


Unlike polycrystalline diamond films, amorphous hydrogenated carbon (AHC) films can be deposited at room temperature, are amorphous in atomic structure, and form very smooth surfaces. Amorphous hydrogenated carbon film consists of very small 10–20 Å sp2 bonded (graphitic) clusters captured in a largely sp3 coordinated, partially hydrogenated random network of covalently bonded carbon. Because of the extreme stiffness of the carbon-carbon bond, this hydrocarbon composite, less dense even than graphite, exhibits hardness rivaling that of the hardest ceramics. We report a systematic study of the tribological characteristics of AHC films deposited on silicon substrates by radio frequency plasma assisted chemical vapor deposition. The friction and wear behavior of these films in sliding contact with a steel ball without any lubrication was evaluated as a function of film deposition conditions, contact stress, sliding speed, sliding distance, and relative humidity. The friction coefficient and the wear of both the contacting surfaces were found to increase with relative humidity. At low relative humidity, (a) the films exhibited friction coefficients in the range of 0.05–0.16 under a contact stress ranging from 0.83 to 1.66 GPa and a sliding speed ranging from 0.03 to 1 m/s and (b) the wear rates of the film and the steel ball were significantly lower than that of other hard coating, such as TiN or TiC, evaluated under similar conditions. These results are very encouraging for some tribological applications of AHC films.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In