0
RESEARCH PAPERS

An Analytical Approach to Elastic-Plastic Stress Analysis of Rolling Contact

[+] Author and Article Information
Yanyao Jiang, Huseyin Sehitoglu

Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801

J. Tribol 116(3), 577-587 (Jul 01, 1994) (11 pages) doi:10.1115/1.2928885 History: Received May 27, 1993; Revised August 27, 1993; Online June 05, 2008

Abstract

Based on a stress invariant hypothesis and a stress/strain relaxation procedure, an analytical approach is forwarded for approximate determination of residual stresses and strain accumulation in elastic-plastic stress analysis of rolling contact. For line rolling contact problems, the proposed method produces residual stress distributions in favorable agreement with the existing finite element findings. It constitutes a significant improvement over the Merwin-Johnson and the McDowell-Moyar methods established earlier. The proposed approach is employed to study combined rolling and sliding for selected materials, with special attention devoted to 1070 steel behavior. Normal load determines the subsurface residual stresses and the size of the subsurface plastic zone. On the other hand, the influence of tangential force penetrates to a depth of 0.3a, where a is the half width of the contact area, and has diminishing influence on the residual stresses beyond this thin layer. A two-surface plasticity model, commensurate with nonlinear kinematic hardening, is utilized in solution of incremental surface displacements with repeated rolling. It is demonstrated that a driven wheel undergoes greater plastic deformation than the driving wheel, suggesting that the driven wheel experiences enhanced fatigue damage. Furthermore, the calculated residual stresses are compared with the existing experimental data from the literature with exceptional agreements.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In