Thermohydrodynamic Lubrication Analysis Incorporating Thermal Expansion Across the Film

[+] Author and Article Information
Nen-Zi Wang, Ali A. Seireg

Mechanical Engineering Department, University of Wisconsin-Madison, WI 53706

J. Tribol 116(4), 681-688 (Oct 01, 1994) (8 pages) doi:10.1115/1.2927316 History: Received February 01, 1993; Revised January 05, 1994; Online June 05, 2008


The study reported in this paper deals with the development of a thermohydrodynamic computational procedure for evaluating the pressure, temperature and velocity distributions in fluid films with fixed geometry between the stationary and moving bearing surfaces. The velocity variations and the heat generation are assumed to occur in a central zone with the same length and width as the bearing but with a significantly smaller thickness than the fluid film thickness. The thickness of the heat generation (shear) zone is developed empirically for the best fit with experimentally determined peak pressures for a journal bearing with a fixed film geometry operating in the laminar regime. A transient thermohydrodynamic computational model with a transformed rectangular computational domain is utilized. The analysis can be readily applied to any given film geometry. The computed distribution of the pressure in the film is in excellent agreement with the experimental findings for different oils and speeds. The developed procedure gives an analytical basis for explaining the “Fogy effect” where significant pressures can be generated in slider bearings with parallel surfaces as a result of the thermal expansion of the film in the direction of the thickness. The procedure confirms the experimentally determined square root relationship between the pressure and the sliding velocity reported in references [1–4]. The normalized pressure profiles computed for the different conditions of the journal bearings are identical to those obtained by isoviscous theory.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In