0
RESEARCH PAPERS

Frictional Heating of Tribological Contacts

[+] Author and Article Information
J. Bos, H. Moes

Department of Mechanical Engineering, University of Twente, Tribology Group, P.O. Box 217, 7500 AE Enschede, The Netherlands

J. Tribol 117(1), 171-177 (Jan 01, 1995) (7 pages) doi:10.1115/1.2830596 History: Received March 01, 1994; Revised June 29, 1994; Online January 24, 2008

Abstract

Wherever friction occurs, mechanical energy is transformed into heat. The maximum surface temperature associated with this heating can have an important influence on the tribological behavior of the contacting components. For band contacts the partitioning of heat has already been studied extensively; however, for circular and elliptic contacts only approximate solutions exist. In this work a numerical algorithm is described to solve the steady state heat partitioning and the associated flash temperatures for arbitrary shaped contacts by matching the surface temperatures of the two contacting solids at all points inside the contact area. For uniform and semi-ellipsoidal shaped heat source distributions, representing EHL conditions and dry or boundary lubrication conditions respectively, function fits for practical use are presented giving the flash temperature as a function of the Péclet numbers of the contacting solids, the conductivity ratio, and the aspect ratio of the contact ellipse. These function fits are based on asymptotic solutions for small and large Péclet numbers and are valid for the entire range of Péclet numbers. By comparison with numerical results they are shown to be accurate within 5%, even for the situation of opposing surface velocities.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In