Contribution of Surface Irregularities to Rolling Contact Plasticity in Bearing Steels

[+] Author and Article Information
V. Gupta, G. T. Hahn, P. C. Bastias

Department of Materials Science and Engineering, Vanderbilt University Nashville, TN 37235

C. A. Rubin

Department of Mechanical Engineering, Vanderbilt University Nashville, TN 37235

J. Tribol 117(4), 660-666 (Oct 01, 1995) (7 pages) doi:10.1115/1.2831532 History: Received July 14, 1993; Revised May 11, 1994; Online January 24, 2008


A “two-body” elasto-plastic finite element model of two-dimensional rolling and rolling-plus-sliding has been developed to treat the effect of surface irregularities. The model consists of a smooth cylinder in contact with a semi-infinite half-space that is either smooth or fitted with one of two irregularities: a 0.4 μm deep groove, or a 7 μm deep groove. The model incorporates elastic-linear-kinematic-hardening-plastic (ELKP) and nonlinear-kinematic-hardening-plastic (NLKP) material constitutive relations appropriate for hardened bearing steel and the 440C grade. The calculated contact pressure distribution is Hertzian for smooth body contact, and it displays intense, stationary, pressure spikes superposed on the Hertzian pressure for contact with the grooved and ridged surface. The results obtained for the 0.4 μm deep groove are consistent with those reported by Elsharkawy and Hamrock (1991) for an EHD lubricated contact. The effect of translating the counterface on the half space, as opposed to indenting the counterface on the half-space with no translation, is studied. The stress and strain values near the surface are found to be similar for the two cases, whereas they are significantly different in the subsurface. Efforts have been made to identify the material constitutive relations which best describe the deformation characteristics of the bearing steels in the initial few cycles. ELKP material constitutive relations produce less net plastic deformation in the initial stages, for a given stress, than seen in experiments. NLKP model produces more plasticity than the ELKP model and shows promise for treating the net distortions in the early stages. Artificial indents were inserted on the running track of the cylindrical rolling elements and profilometer measurements of these indents were made, before and after rolling. These preliminary measurements show that substantial plastic deformation takes place in the process of rolling. The deformations of the groove calculated with the finite element model are compared to those measured experimentally.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In