On the Accuracy of Rolling Bearing Fatigue Life Prediction

[+] Author and Article Information
T. A. Harris

Mechanical Engineering Department, Pennsylvania State University, University Park, PA 16803

J. I. McCool

Industrial and Management Systems Engineering, Pennsylvania State University, Great Valley, PA

J. Tribol 118(2), 297-309 (Apr 01, 1996) (13 pages) doi:10.1115/1.2831299 History: Received December 27, 1994; Revised June 26, 1995; Online January 24, 2008


Ball and roller bearings are designed to meet endurance requirements basically determined according to the Standard fatigue life calculation method. This method is based on the Lundberg-Palmgren fatigue life theory as modified by reliability, material, and lubrication factors. As application load and spied requirements have increased, the Lundberg-Palmgren method has resulted in bearings of increased size, adding unnecessarily to the size and weight of mechanisms. This is a critical design situation for weight and size-sensitive components such as aircraft gas turbine engines and helicopter power transmissions. The bearing life prediction method developed by Ioannides and Harris recognizes the existence of a fatigue limit stress. If the stresses an operating bearing experiences do not exceed the limit stress, the bearing can achieve infinite life. In any case, the method tends to predict longer lives than the Lundberg-Palmgren method. This paper evaluates the life prediction accuracies of the Lundberg-Palmgren and Ioannides-Harris methods by comparing lives calculated according to these methods and to those actually experienced in 62 different applications. As a result of the investigation, the Ioannides-Harris method is shown to more accurately predict bearing fatigue endurance.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In