0
RESEARCH PAPERS

A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings

[+] Author and Article Information
J. W. Lund

Solid Mechanics, Mechanical Technology Inc., Latham, N. Y.

J. of Lubrication Tech 89(2), 154-165 (Apr 01, 1967) (12 pages) doi:10.1115/1.3616933 History: Received July 16, 1965; Online July 12, 2011

Abstract

A theoretical analysis is presented for the threshold of instability for a rigid rotor supported in hydrostatic gas journal bearings. Both rotationally induced instability (hybrid instability) and pneumatic hammer are considered. The analysis is based on a first-order perturbation with respect to the eccentricity ratio (i.e., the results are limited to small eccentricity ratios) and makes use of the linearized Ph-method [2, 5, 8]. The pressurized gas is supplied to the bearing through restricted feeding holes in the center plane of the bearing and the analysis takes into account the discreteness of the feeding holes, the feeder hole time constant, and inherent compensation effects. Numerical results are given in form of 16 graphs, showing the threshold of instability as a function of supply pressure ratio, feeding parameter and eccentricity ratio. Also, the effect of the feeder hole time constant is investigated with respect to pneumatic hammer.

Copyright © 1967 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In