0
RESEARCH PAPERS

The Effect of Elastic Distortions on Journal Bearing Performance

[+] Author and Article Information
J. O’Donoghue, D. K. Brighton

Joseph Lucas Group Research, Ltd., Shirley, Solihull, Warwickshire, England

C. J. K. Hooke

Mechanical Engineering Department, Birmingham University

J. of Lubrication Tech 89(4), 409-415 (Oct 01, 1967) (7 pages) doi:10.1115/1.3617009 History: Received December 22, 1965; Online July 11, 2011

Abstract

This paper presents a solution to the problem of hydrodynamic lubrication of journal bearings taking into account the elastic distortions of the shaft and the bearing. The exact solution for determining the elastic deformation for a given pressure distribution around a bearing is given, together with the reiterative procedure adopted to find the pressure distribution which satisfies both the hydrodynamic and elastic requirements of the system. Results are given which have been derived for a material with a Poisson’s ratio of 0.28, but other values such as 0.33 do not incur substantial errors. The results can be applied to a wide range of operating conditions using the nondimensional group of terms suggested in the paper. The bearing is assumed to be infinite in length, and infinite in thickness. The latter assumption is shown to be valid for a particular case where the outside diameter of the bearing shell is 3.5 times the shaft diameter. A further assumption in the calculation is a condition of constant viscosity of the lubricant existing around the bearing.

Copyright © 1967 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In