0
RESEARCH PAPERS

The One-Dimensional Optimum Hydrodynamic Gas Slider Bearing

[+] Author and Article Information
C. J. Maday

Department of Engineering Mechanics, North Carolina State University, Raleigh, N. C.

J. of Lubrication Tech 90(1), 281-284 (Jan 01, 1968) (4 pages) doi:10.1115/1.3601547 History: Received February 03, 1967; Online August 23, 2011

Abstract

Bounded variable methods of the calculus of variations are used to determine the optimum or maximum load capacity hydrodynamic one-dimensional gas slider bearing. A lower bound is placed on the minimum film thickness in order to keep the load finite, and also to satisfy the boundary conditions. Using the Weierstrass-Erdmann corner conditions and the Weierstrass E-function it is found that the optimum gas slider bearing is stepped with a convergent leading section and a uniform thickness trailing section. The step location and the leading section film thickness depend upon the bearing number and compression process considered. It is also shown that the bearing contains one and only one step. The difference in the load capacity and maximum film pressure between the isothermal and adiabatic cases increases with increasing bearing number.

Copyright © 1968 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In