Elastohydrodynamic Effects in a Clearance Seal

[+] Author and Article Information
N. M. Wang, M. M. Kamal

General Motors Research Laboratories, Warren, Mich.

J. of Lubrication Tech 92(2), 310-313 (Apr 01, 1970) (4 pages) doi:10.1115/1.3451400 History: Received November 05, 1969; Online October 18, 2010


An elastohydrodynamic solution for a high-pressure, low-clearance metal seal is presented. The fluid flow is assumed to satisfy Reynolds equation of hydrodynamic lubrication, and the deformation of the shaft and the seal is governed by the linear theory of elasticity. The viscosity of the fluid is assumed to have an exponential dependence on the pressure, while the density of the fluid is a linear function of the pressure. Closed-form solutions are obtained for two asymptotic limiting cases: (i) when the length of the seal is much greater than the radius of the shaft, and (ii) when it is much less. For intermediate ratios of the seal length to shaft radius, solutions are obtained numerically and examples are given to show the effect of seal length on the rate of mass flow.

Copyright © 1970 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In