Performance of Plain Journal Bearings Operating Under Vortex Flow Conditions

[+] Author and Article Information
J. Frêne, M. Godet

Laboratoire de Mécanique des Contacts, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France

J. of Lubrication Tech 96(1), 145-149 (Jan 01, 1974) (5 pages) doi:10.1115/1.3451886 History: Received October 26, 1972; Online October 18, 2010


An experimental program conducted on an original device was undertaken to study the performance of plain bearings operating at sufficiently high Reynolds number to introduce Taylor vortices. Curves of relative eccentricity, attitude angle, and friction torque were obtained versus speed and load. Experimental results conducted for Reynolds number smaller than 1100 indicate that both laminar and Taylor vortex regimes are encountered. The occurrence of the vortices is identified by a break in the slope of the friction torque versus speed curves. The position of the break is in good agreement with the theoretical predictions of Di Prima and Ritchie. From the practical point of view, the data show that for constant viscosity the occurence of Taylor vortices does not alter the curves of eccentricity versus either speed or load but modifies the attitude angle and frictional torque. In turn, the increase in frictional torque, and subsequently of temperature may cause a decrease in viscosity and thus a drop in load carrying capacity for fluids such as oils whose variations of viscosity with temperature is large.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In