0
RESEARCH PAPERS

High Shear Stress Behavior of Some Representative Lubricants

[+] Author and Article Information
J. Jakobsen

Dept. of Machine Design, The Technical University of Denmark, Copenhagen, Denmark

W. O. Winer

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga.

J. of Lubrication Tech 97(3), 479-485 (Jul 01, 1975) (7 pages) doi:10.1115/1.3452640 History: Received July 08, 1974; Online October 18, 2010

Abstract

Shear stress independent behavior was observed for representative, synthetic, nonblended lubricants to about 4.8 × 106 N/m2 (700 psi) shear stress in high pressure viscometric measurements. This shear stress is of the same magnitude as the shear stress in sliding elastohydrodynamic contacts. It is shown that dissipation heating is the only mechanism of importance in the generation of the deviations from constant viscosity as measured with capillary tube viscometric methods. The Newtonian end corrections for the capillary tubes were found to be constant for the nonblended, liquid lubricants. Newtonian behavior will be expected of the fluids in a high shear lubrication situation. Shear induced, nonliquid behavior was found for the silicone lubricant at about 106 N/m2 and for the polymer-blended mineral oil at about 104 N/m2 at a relatively low pressure level. The observations might provide a key to an understanding of the generation of the anomalous low elastohydrodynamic film thickness as found with these lubricants. The polymer-blended oil showed shear thinning effects. The apparent viscosity was found to increase (∼30 percent) with increasing shear stress in the range of the second Newtonian viscosity level.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In