The Effect of Viscous Shear Heating on Both Film Thickness and Rolling Traction in an EHL Line Contact—Part I: Fully Flooded Conditions

[+] Author and Article Information
P. G. Goksem, R. A. Hargreaves

Sunderland Polytechnic, England

J. of Lubrication Tech 100(3), 346-352 (Jul 01, 1978) (7 pages) doi:10.1115/1.3453183 History: Received March 03, 1978; Online October 20, 2010


A theoretical analysis of both fully flooded rolling traction and film thickness in an EHL line contact is described and modified formulas for fully flooded isothermal conditions are presented. These are compared with the Grubin, Dowson, and Higginson film thickness formulas, and the rolling traction theory by Archard and Baglin (1975). The effect of viscous shear heating in the inlet region has been investigated and new equations for both fully flooded film thickness and rolling traction, including this thermal effect, are introduced. These equations predict significant reductions in both film thickness and rolling traction, relative to the isothermal case, as speed is increased. Viscous shear heating effect is found to be negligible only at very low rolling speeds. The results of the theoretical analysis compare well with experimental data presented by Dyson, Naylor, and Wilson (1966) and Adams and Hirst (1973).

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In