0
RESEARCH PAPERS

Centrifugal Effects in Thrust Bearings and Seals Under Laminar Conditions

[+] Author and Article Information
Oscar Pinkus, J. W. Lund

Department of Machine Elements, Technical University of Denmark, Lyngby, Denmark

J. of Lubrication Tech 103(1), 126-136 (Jan 01, 1981) (11 pages) doi:10.1115/1.3251600 History: Received February 25, 1980; Online November 17, 2009

Abstract

An analysis is conducted and solutions are provided for the effect of centrifugal forces on the hydrodynamics of high-speed thrust bearings and seals. First, a scrutiny of the individual inertia terms of the Navier-Stokes equations delineates the circumstances under which the centrifugal term (u2 /r) becomes the dominant component. A Reynolds equation incorporating centrifugal forces is then derived for finite sectorial configurations operating under incompressible laminar conditions. Thermal effects are included. The equation is solved by finite difference methods. The results show that at the upper limits of laminar operation centrifugal forces reduce considerably the load capacity and alter the pattern of lubricant flow. As a result, at sufficiently high velocities the inflow of lubricant at the inner radius of a sectorial configuration may bring about the scavenging of lubricant from wide portions of the bearing surface, producing a form of thrust bearing cavitation. Design features which would reduce the negative consequences of centrifugal action are outlined, including the introduction of radial tapers.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In