0
RESEARCH PAPERS

Characteristics of an Oil Squeeze Film

[+] Author and Article Information
D. W. Parkins, W. T. Stanley

Department for the Design of Machine Systems, Cranfield Institute of Technology, Cranfield, England

J. of Lubrication Tech 104(4), 497-502 (Oct 01, 1982) (6 pages) doi:10.1115/1.3253268 History: Received March 13, 1981; Online November 13, 2009

Abstract

This paper presents both theoretically and experimentally determined characteristics of an oil squeeze film. In the experimental arrangement, an oil film was contained within two plane surfaces having only normal oscillatory relative motion. The effects of initial oil film thickness, peak to peak amplitude, and frequency of oscillation were measured. A finite difference treatment gave theoretical oil pressure fields and forces for any specified normal velocity. Comparisons were made between the pressure measured at one position and its theoretical counterpart over an oscillatory cycle. Subzero oil film pressures were measured. A steady state (in addition to the dynamic) oil film force was identified, whose magnitude and direction depend on the mean oil film thickness, oscillatory amplitude, and frequency. A region of unstable behavior was found. Theory agreed reasonably with practice, but over estimated some oil film pressures and gave time histories which exhibited phase differences with the measured counterpart. These differences were not explained by including the measured pad misalignment in the theoretical model. Further extensions to the theory are suggested.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In