Finite-Length Solutions for Rotordynamic Coefficients of Turbulent Annular Seals

[+] Author and Article Information
D. W. Childs

Mechanical Engineering Department, Texas A&M University, College Station, Texas 77843

J. of Lubrication Tech 105(3), 437-444 (Jul 01, 1983) (8 pages) doi:10.1115/1.3254636 History: Received September 09, 1981; Online November 13, 2009


Expressions are derived which define dynamic coefficients for high-pressure annular seals typical of wear-ring and interstage seals employed in multistage centrifugal pumps. Completely developed turbulent flow is assumed in both the circumferential and axial directions, and is modeled by Hirs’ turbulent lubrication equations. Linear zeroth and first-order perturbation equations are developed by an expansion in the eccentricity ratio. The influence of inlet swirl is accounted for in the development of the circumferential flow. The zeroth-order momentum and continuity equations are solved exactly, while their first-order counterparts are reduced to three ordinary, complex, differential equations in the axial coordinate Z. The equations are integrated to satisfy the boundary conditions and define the pressure distribution due to seal motion. Integration of the pressure distribution defines the reaction force developed by the seal and the corresponding dynamic coefficients. Finite-length solutions for the coefficients are compared to two “short-seal” solutions.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In