0
RESEARCH PAPERS

Dynamic Stability and Spacing Modulation of Sub-25 nm Fly Height Sliders

[+] Author and Article Information
Yong Hu, David B. Bogy

Computer Mechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Tribol 119(4), 646-652 (Oct 01, 1997) (7 pages) doi:10.1115/1.2833864 History: Received February 22, 1996; Revised May 10, 1996; Online January 24, 2008

Abstract

Designing a reliable sub-25 nm spacing head/disk interface for today’s magnetic hard disk drives demands a greater dynamic stability and a smaller spacing modulation. An air bearing dynamic simulator with multiple features is developed to investigate the dynamic characteristics of three shaped-rail negative pressure sub-25 nm fly height sliders. Various simulations including air bearing stiffness, impulse response, surface roughness induced spacing modulation, bump response, and track seeking dynamics are performed. The results indicate that the roughness induced spacing modulation decreases with the increase of the air bearing stiffness and the decrease of the slider size. The suspension dynamics is integrated into the air bearing dynamics simulation for the track accessing motion by modal analysis. It is concluded that the fly height modulation during a track accessing event is attributed to many factors such as the effective skew angle, the seeking velocity, and the roll motion caused by the inertia of the moving head. The extent of the roll motion effect depends on the air bearing roll stiffness and the level of the inertia force of the moving head. Larger roll stiffness and smaller inertia force produce a smoother track accessing performance.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In