Characterization of Adhesive Strength of Phosphate Coatings in Cold Metal Forming

[+] Author and Article Information
H. Saiki, G. Ngaile, L. Ruan

Department of Mechanical Engineering, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860 Japan

J. Tribol 119(4), 667-671 (Oct 01, 1997) (5 pages) doi:10.1115/1.2833867 History: Received February 16, 1996; Revised July 01, 1996; Online January 24, 2008


A test method is proposed to characterize adhesive strength of phosphate coatings based on the various deformation patterns at the tool-workpiece interface. The deformation patterns were induced by tools of different surface geometrical profiles, i.e., flat surface, sinusoidal surface, saw-tooth surface and multi-surface profiles, in a localized rod drawing technique. With change in the tool geometry, three deformation regimes were observed, i.e., full film lubrication regime, mixed regime, and seizure regimes, which were categorized by the level of friction coefficient attained, and the degree of galling observed on the surface of the drawn specimens. The full film lubrication regimes were noticed when flat dies were used. In this case, the friction coefficient was maintained at nearly μ = 0.065, irrespective of the change in the surface roughness of the tools and reduction. With sinusoidal surface and other non-flat dies, mixed regime and seizure regimes were observed, and the friction coefficient varied from μ = 0.1 to 0.3. To complement the friction data, surface analysis of the tool-workpiece interface was also conducted. The frictional range of μ = 0.065 to 0.3 obtained in this study, therefore, provides for a manageable characterization of phosphate coatings for cold metal forming of objects with intricate shapes.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In