Transition Process From Contact to Floating State in a Squeeze Air Film

[+] Author and Article Information
K. Kajiwara, Y. Harayama, R. Ueda, T. Sonoda

Department of Electrical Engineering, Kyushu Institute of Technology, Kitakyushu, 804, Japan

J. Tribol 120(1), 60-68 (Jan 01, 1998) (9 pages) doi:10.1115/1.2834191 History: Received June 16, 1994; Revised October 08, 1996; Online January 24, 2008


This paper presents a series of trials of direct detection of the transition process of a squeeze film, from the contacting state into the floating one. The material was initially placed on the surface of a vibrator constituting a squeeze air film. Three electrical trials were performed to certify whether the material could be elevated after the vibrator was excited. When this is done, clearance is expected between the surfaces of the test material and the vibrator. This may be regarded as the equivalent of a change in electrical resistance from almost zero to infinity, with a kind of parallel-plate capacitor being formed. First, detection through DC current was carried out. The experimental result, however, reveals that the resistance never does become infinite, although the equivalent contacting area calculated from this value is very small. Second, detection through DC voltage was performed by terminating the clearance with parallel resistance. The experimental results verify the appearance of the floating state. Third, the average clearance could be detected by regarding it as a parallel-plate type capacitor. Here a Langevin type piezoelectric transducer was used as the vibrator. Through these experimental results an important fact was observed: the waveform of the voltage applied to the transducer is closely related to the movement of the clearance in the time domain.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In