0
RESEARCH PAPERS

Particle Trajectories Around a Flying Slider

[+] Author and Article Information
S. C. Lin, T. C. Kuo, C. C. Chieng

Department of Nuclear Engineering and Engineering Physics, National Tsing Hua University, Hsinchu, Taiwan 30042

J. Tribol 120(1), 69-74 (Jan 01, 1998) (6 pages) doi:10.1115/1.2834192 History: Received July 17, 1996; Revised February 01, 1997; Online January 24, 2008

Abstract

The Eulerian-Lagrangian approach is employed to simulate droplet trajectories due to the large-velocity gradient between two solid surfaces: a stationery block (slider) and a rotating plane (disk). Sudden expansion after the extremely small spacing will trap the particles in the open spaces. The fluid phase flowfield is obtained by solving Navier-Stokes equations with slip boundary correction in the Eulerian approach, and the droplet trajectories are calculated by integrating equations of motion with slip correction in the Lagrangian approach. Because of the extremely small spacing and the droplet size, Brownian motion effectively increases the probability of slider-head collisions, especially for extremely small particles. This study demonstrates that the effect due to particle size is the dominant factor in determining the probability of particle-slider collision, especially for particle sizes comparable with the air mean free path and the flowfield immediately adjacent to the solid surfaces. The results also show that lowering the flying height of the slider and increasing the disk velocity attracts the particles toward the gap between the disk and the slider.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In