Stability Analysis of Mechanical Seals With Two Flexibly Mounted Rotors

[+] Author and Article Information
J. Wileman

Laboratoire de Mécanique des Solides, URA CNRS Université de Poitiers, Poitiers, France

I. Green

The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

J. Tribol 120(2), 145-151 (Apr 01, 1998) (7 pages) doi:10.1115/1.2834401 History: Received July 23, 1996; Revised September 09, 1996; Online January 24, 2008


Dynamic stability is investigated for a mechanical seal configuration in which both seal elements are flexibly mounted to independently rotating shafts. The analysis is applicable to systems with both counterrotating and corotating shafts. The fluid film effects are modeled using rotor dynamic coefficients, and the equations of motion are presented including the dynamic properties of the flexible support. A closed-form solution for the stability criteria is presented for the simplifled case in which the support damping is neglected. A method is presented for obtaining the stability threshold of the general case, including support damping. This method allows instant determination of the stability threshold for a fully-defined seal design. A parametric study of an example seal is presented to illustrate the method and to examine the effects of various parameters in the seal design upon the stability threshold. The fluid film properties in the example seal are shown to affect stability much more than the support properties. Rotors having the form of short disks are shown to benefit from gyroscopic effects which give them a larger range of stable operating speeds than long rotors. For seals with one long rotor, counterrotating operation is shown to be superior because the increased fluid stiffness transfers restoring moments from the short rotor to the long.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In