0
RESEARCH PAPERS

Analysis of Two-Phase Flow in Cryogenic Damper Seals—Part II: Model Validation and Predictions

[+] Author and Article Information
Grigory L. Arauz, Luis San Andrés

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

J. Tribol 120(2), 228-233 (Apr 01, 1998) (6 pages) doi:10.1115/1.2834414 History: Received December 03, 1996; Revised April 16, 1997; Online January 24, 2008

Abstract

Cryogenic fluid damper seals operating close to the liquid-vapor region (near the critical point or slightly sub-cooled) are likely to develop a two-phase flow region which affects the seal performance and reliability. An all-liquid, liquid-vapor, and all-vapor, i.e., a “continuous vaporization” bulk flow model for prediction of the seal dynamic forced response is given in Part I. The numerical method of solution of the flow equations is detailed here. Computed predictions for static seal characteristics, leakage and axial pressure drop, correlate well with existing measurements for a gaseous nitrogen seal and a liquid nitrogen seal with two-phase at the seal exit plane. The effects of two-phase flow regimes on the dynamic force coefficients and stability of an oxygen damper seal are discussed. Fluid compressibility effects, particularly for mixtures with low mass content of vapor, are of utmost importance. Under these conditions, an increase on seal direct stiffness and reduction of whirl frequency ratio are shown to occur.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In