Dynamic Instabilities in the Sliding of Two Layered Elastic Half-Spaces

[+] Author and Article Information
G. G. Adams

Department of Mechanical Engineering, Northeastern University, Boston, MA 02115

J. Tribol 120(2), 289-295 (Apr 01, 1998) (7 pages) doi:10.1115/1.2834424 History: Received November 19, 1996; Revised April 28, 1997; Online January 24, 2008


Two flat layered elastic half-spaces, of different material properties, are pressed together and slide against each other with a constant coefficient of friction. Although a nominally steady-state solution exists, an analysis of the dynamic motion yields complex eigenvalues with positive real parts, i.e., a flutter instability. These results demonstrate that self-excited (unstable) motion occurs for a wide range of material combinations. The physical mechanism responsible for this instability is that of slip-wave destabilization. The influence of the properties of the layers on the destabilization of sliding motion is investigated. These dynamic instabilities lead either to regions of stick-slip or to areas of loss-of-contact. Finally the dynamic stresses at the interfaces between the layers and the semi-infinite bodies are determined and compared to the nominally steady-state stresses. These dynamic stresses are expected to play an important role in delamination.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In