0
RESEARCH PAPERS

Nanotribological Properties of Organic Boundary Lubricants: Langmuir Films Versus Self-Assembled Monolayers

[+] Author and Article Information
Valery N. Bliznyuk, Vladimir V. Tsukruk

College of Engineering & Applied Sciences, Western Michigan University, Kalamazoo, MI 49008

Mark P. Everson

Physics Department, Ford Research Laboratory, Dearborn, MI 48121

J. Tribol 120(3), 489-495 (Jul 01, 1998) (7 pages) doi:10.1115/1.2834577 History: Received February 12, 1997; Revised August 18, 1997; Online January 30, 2008

Abstract

Frictional characteristics of several types of boundary lubricants were tested using scanning probe microscopy (SPM). These include Langmuir monolayers of stearic acids (STA), their cadmium salts (STCd), self-assembling monolayers (SAMs) of alkylchlorsilanes, and complexes of STA with rigid naphthoylene benzimidazole (x-NBI) fragments. We observed that a Langmuir monolayer deposited on a silicon surface had a very low friction coefficient against a silicon nitride tip (about 0.01–0.05) but also low mechanical stability. SAMs were found to be much more stable but had the drawback of growth in the friction coefficient at high sliding velocities. Composite NBI/STA monolayers were much more stable and were not damaged by the highest normal load applied. The frictional behavior of different monolayers was analyzed in relation to their structural organization (the type of tethering to the surface and packing density). We introduced a figure of merit (FOM) parameter which allowed comparison of frictional properties of very different lubricant materials to those of the supporting substrate. For Langmuir monolayers the FOM increased strongly with surface packing density whereas for SAMs and x-NBI/STA complexes it possessed a maximum at surface densities in the range 3.5–4.5 molecules per nm2 . Because of the possibility of tailoring the surface packing density of aliphatic tails in the complexes, they are a promising alternative to both LB films and SAMs. For such composite monolayers, the surface packing density can be optimized to give a desired frictional behavior.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In