Air entrained between a web and roller can cause a loss in traction that can affect web quality. The entrained air causes an air layer to form which separates the web from the roller. Insufficient traction exists at this point and an idler roller will be unable to be driven by the web. Other applications, however, such as newsprint moving around a turnbar, require complete clearance. An equation for predicting the air film height between a permeable web and roller was developed using foil bearing theory. The separation distance (h) between the roller and web is a function of the roller radius (R), web tension (T), air viscosity (η), summation of the web and roller velocities (U), and the web permeability (α). The air film height was found to decrease linearly around the circumference (θ) of the roller in the constant pressure region. Therefore, the air film height can be expressed simply as,
h = 0.643R[(6ηU)/T]2/3 −2[(αT)/U]θ
The slope of the air film height is a function of the web/roller velocity, web tension, and the permeability of the paper. A correction factor for side leakage was also incorporated into the result.