0
RESEARCH PAPERS

Vibration Analysis of Statically Indeterminate Rotors With Hydrodynamic Bearings

[+] Author and Article Information
N. S. Feng, E. J. Hahn

The University of New South Wales, Sydney, Australia

J. Tribol 120(4), 781-788 (Oct 01, 1998) (8 pages) doi:10.1115/1.2833779 History: Received October 02, 1997; Revised February 23, 1998; Online January 24, 2008

Abstract

In statically indeterminate rotor bearings systems, where the rotor is supported by one or more hydrodynamic bearings, the reactions at each hydrodynamic bearing, and hence its stiffness and damping properties depend not only on the bearing type, the operating conditions and the bearing dimensions but also on the relative lateral alignment between the journal and the bearing housing; the alignment, therefore, has a significant influence on the system stability and unbalance response. Additional complications arise if nonsymmetric bearing types such as elliptic or tilting pad bearings are present. An iterative procedure is outlined which enables the bearing reactions to be determined at any speed, thereby enabling even large systems such as turbomachinery to be rapidly analyzed in conjunction with existing linear rotor bearing vibration analysis software. Sample numerical examples show how misalignment and bearing type can affect the natural frequencies, the stability threshold, and the unbalance response of such statically indeterminate systems.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In