0
RESEARCH PAPERS

CFD Comparison to 3D Laser Anemometer and Rotordynamic Force Measurements for Grooved Liquid Annular Seals

[+] Author and Article Information
J. Jeffrey Moore, Alan B. Palazzolo

Texas A & M University, Mechanical Engineering Department, College Station, TX 77843

J. Tribol 121(2), 306-314 (Apr 01, 1999) (9 pages) doi:10.1115/1.2833937 History: Received January 14, 1998; Revised June 22, 1998; Online January 24, 2008

Abstract

A pressure-based computational fluid dynamics (CFD) code is employed to calculate the flow field and rotordynamic forces in a whirling, grooved liquid annular seal. To validate the capabilities of the CFD code for this class of problems, comparisons of basic fluid dynamic parameters are made to three-dimensional laser Doppler anemometer (LDA) measurements for a spinning, centered grooved seal. Predictions are made using both a standard and low Reynolds number κ-ε turbulence model. Comparisons show good overall agreement of the axial and radial velocities in the through flow jet, shear layer, and recirculation zone. The tangential swirl velocity is slightly under-predicted as the flow passes through the seal. By generating an eccentric three-dimensional, body fitted mesh of the geometry, a quasi-steady solution may be obtained in the whirling reference frame allowing the net reaction force to be calculated for different whirl frequency ratios, yielding the rotordynamic force coefficients. Comparisons are made to the rotordynamic force measurements for a grooved liquid annular seal. The CFD predictions show improved stiffness prediction over traditional multi-control volume, bulk flow methods over a wide range of operating conditions. In cases where the flow conditions at the seal inlet are unknown, a two-dimensional, axisymmetric CFD analysis may be employed to efficiently calculate these boundary conditions by including the upstream region loading to the seal. This approach is also demonstrated in this study.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In