0
RESEARCH PAPERS

Boundary Additive Effect on Abrasive Wear During Single Asperity Plowing of a 3004 Aluminum Alloy

[+] Author and Article Information
Susanne M. Opalka, Louis G. Hector, Ronald A. Reich, June M. Epp

Tribology and Surface Evolution Technology Center, ALCOA Technical Center, ALCOA Center, PA

Steven R. Schmid

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame IN

J. Tribol 121(2), 384-393 (Apr 01, 1999) (10 pages) doi:10.1115/1.2833951 History: Received April 02, 1998; Revised June 04, 1998; Online January 24, 2008

Abstract

Aluminum forming processes such as rolling, extrusion, and ironing involve the transfer of large loads through a tooling/workpiece interface to plastically deform the workpiece to a desired shape. Sharp tool surface asperities can plow the workpiece and lead to elevated friction and temperatures in the interface with a subsequent increase in abrasive wear debris which in turn degrades the surface aesthetics of the final product. To minimize associated friction and wear levels in aluminum forming processes, a base oil with one or more boundary additives is used as a lubricant. At the present time, however, little is known about the mechanisms by which a given additive influences abrasive wear in an aluminum metal forming interface. In the present work, a series of single asperity plowing experiments on a 3004-O aluminum alloy with selected lubricant components was conducted. Three additives were separately investigated, viz., stearic acid, butyl stearate, and lauryl alcohol. The plowing motion of a pyramidal diamond indentor with a cutting edge oriented in the plowing direction (i.e., a sharp indentor) was controlled with the piezo-electric transducers of an atomic force microscope. The experiments help to provide insight about the interplay between additive reaction with the surface and plowing mechanics. Further insight into this interplay and abrasive wear debris generation was sought, albeit qualitatively, through additional experiments involving a diamond indentor for which no one cutting edge was oriented in the plowing direction (i.e., a blunt indentor). The tests allowed evaluation of the boundary lubricant mechanism and propensity for generating wear debris.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In