0
TECHNICAL PAPERS

Study of a Novel Squeeze Film Damper and Vibration Generator

[+] Author and Article Information
C. V. Suciu, M. D. Pascovici

Department of Machine Elements and Tribology, “Politehnica” University of Bucharest, 313 Splaiul Independentei, 79590 Bucharest 6, Romania

O. Bonneau, J. Fre⁁ne

Laboratoire de Mecanique des Solides, University of Poitiers, SP2MI-Bd 3 Teleport 2, BP 179, 86960 Futuroscope Cedex, France

D. Brun-Picard

Laboratoire Sols Solides Structures, National Polytechnic Institut of Grenoble, Domaine Universitaire, BP53, 38041 Grenoble Cedex 9, France

J. Tribol 122(1), 211-218 (Jan 19, 1999) (8 pages) doi:10.1115/1.555345 History: Received October 28, 1997; Revised January 19, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Morishita, S., and Mitsui, J., 1990, “Squeeze Film Damper as an Application of Electrorheological Fluid,” 3rd International Conference on Rotor Dynamics, Lyon, pp. 277–282.
Jung, S. Y., and Choi, S. B., 1995, “Analysis of a Short Squeeze Film Damper Operating with Electrorheological Fluid,” STLE Trans., pp. 857–862.
Kim, C -H., Lee, N -S., Lee, Y -B., and Choi, D -H., 1998, “Vibration Control of a Pressurised, Sealed, Electrorheological Fluid Squeeze Film Damper Supported Rotor,” 7th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC 7, Honolulu, Hawaii, Vol. A, pp. 238–247.
Pecheux,  B., Bonneau,  O., and Fre⁁ne,  J., 1997, “Investigation about Electro-Rheological Squeeze Film Damper Applied to Active Control of Rotor Dynamic,” Int. J. Rot. Mach., 3, No. 1, pp. 53–60.
Bonneau, O., and Fre⁁ne, J., 1990, “Study of a Squeeze Film Damper with an Axial Controlled Flow,” 3th International Conference on Rotor Dynamics, IFTOM, Lyon, pp. 295–300.
Bonneau, O., and Fre⁁ne, J., 1994, “Numerical Study of a Flexible Rotor Mounted in an Active Squeeze Film Damper,” 4th International Conference on Rotor Dynamics, IFTOM, Chicago, pp. 327–331.
Mu,  C., Darling,  J., and Burrows,  C. R., 1991, “An Appraisal of a Proposed Active Squeeze Film Damper,” ASME J. Tribol., 113, pp. 750–754.
Suciu, C. V., 1995, “Rapport—Contributions a l’étude d’amortisseurs fluide (squeeze film dampers) permettant de reduire les vibrations de flexion des arbres,” University of Poitiers, Laboratoire de Mecanique des Solides.
Suciu, C. V., and Brun-Picard, D., 1996, “Rapport—Amortisseur et/ou générateur de vibrations hydrodynamique,” National Polytechnic Institute of Grenoble, Laboratoire Sols Solides et Structures.
Suciu, C. V., Bonneau, O., Frene, J., and Brun-Picard, D., 1996, “Analytical Investigation of an Active Control Squeeze Film Damper,” Rotrib’96, Bucharest, Vol. 18, No. 3, pp. 16–26.
Suciu, C. V., Bonneau, O., Brun-Picard, D., Fre⁁ne, J., and Pascovici, M. D., 1998, “Study of a Squeeze Film Damper and Vibration Generator. Part I: Theoretical Investigations. Part II: Experimental Investigations,” ASME/STLE International Tribology Conference, Toronto, poster session.
Adams, M. L., and Zahloul, H., 1987, “Attenuation of Rotor Vibration Using Controlled-Pressure Hydrostatic Squeeze Film Dampers,” Rotating Machinery Dynamics, 11th Biennial Conference on Mechanical Vibrations and Noise, Boston, pp. 29–37.
Burrows,  C. R., Sahinkayo,  M. N., and Turkay,  O. S., 1984, “An Adaptive Squeeze Film Bearing,” ASME J. Tribol., 106, pp. 145–151.
Pinkus, O., and Sternlicht, B., 1961, Theory of Hydrodynamic Lubrication, McGraw-Hill, New York.

Figures

Grahic Jump Location
SFD&VG—Rayleigh step geometry
Grahic Jump Location
Elliptical SFD&VG: (a) SFD&VG longitudinal view. (b) Frontal view of elliptical stator and rotor. (c) Pictorial view of stator and rotor.
Grahic Jump Location
Dimensionless damping and hydrodynamic wedge load versus ξ (λ̄=1/2 and H=1)
Grahic Jump Location
Elliptical SFD&VG—planar calculus configuration (major axes of elliptical rotor and stator separated by angle α)
Grahic Jump Location
Dimensionless pressure distributions p̄ for zones Z11 and Z12, α=30 deg (pure squeeze film effect)
Grahic Jump Location
Dimensionless pressure distributions p̃ for Z11 and Z12, α=30 deg (pure hydrodynamic wedge effect)
Grahic Jump Location
Load capacity F̄ versus α
Grahic Jump Location
Load capacity F̃ versus α, for H=1
Grahic Jump Location
SFD&VG dynamic simulation: (a) ASFD regime; α=0 deg. (b) ASFD regime; α=90 deg. (c) Vibrations generator regime; a*=8.1 μm.
Grahic Jump Location
Vibration measurements on SFD&VG, ASFD regime (η=0.55 Ns/m2;(h1)0=200 μm;Ks=1.3⋅105 N/m): (a) Vibration spectrum, measured using accelerometers, for α=0 deg. (b) Vibration spectrum, measured using accelerometers, for α=90 deg.
Grahic Jump Location
Vibration measurements on SFD&VG, vibration generator regime (Ks=1.3⋅105 N/m): (a) Vibration spectrum, measured using accelerometers (η=0.57 Ns/m2;(h1)0=50 μm). (b) Oscillatory displacement recorded in time, measured using eddy-current sensor (η=0.57 Ns/m2;(h1)0=50 μm).
Grahic Jump Location
Damping factors ratio ζ/ζmax versus rotation angle α (ASFD regime; theoretical and experimental results)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In