The Surface Temperature of a Half-Plane Subjected to Rolling/Sliding Contact With Convection

[+] Author and Article Information
F. D. Fischer

Institut für Mechanik, Montanuniversität Leoben, A-8700 Leoben

E. Werner

Lehrstuhl A für Mechanik und Christian Doppler Laboratorium für Moderne Mehrphasenstähle, Technische Universität München, Boltzmannstraße 15, D-85747 Garching

K. Knothe

Technische Universität Berlin, Fachbereich 10, Verkehrswesen und angewandte Mechanik, Institut für Luft und Raumfahrt, Marchstraße 12, D-10587 Berlin

J. Tribol 122(4), 864-866 (Jan 27, 2000) (3 pages) doi:10.1115/1.1288927 History: Received September 28, 1999; Revised January 27, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Lim,  S. C., and Ashby,  M. F., 1987, “Wear-Mechanism Maps,” Acta Metall., 35, pp. 1–24.
Cowan, R. S., and Winer, W. O., 1992, Frictional Heating Calculations, ASM Handbook, 18 , “Friction, Lubrication, and Wear Technology,” Davis, J. R., et al., eds., ASM International, The Materials Information Society, pp. 39–44.
Persson, B. N. J., 1998, Sliding Friction, Springer-Verlag, Berlin, Heidelberg, New York.
Knothe,  K., and Liebelt,  S., 1995, “Determination of Temperatures for Sliding Contact With Applications for Wheel-Rail Systems,” Wear, 189, pp. 91–99.
Fischer,  F. D., Werner,  E., and Yan,  W. Y., 1997, “Thermal Stresses for Frictional Contact in Wheel-Rail Systems,” Wear, 221, pp. 156–163.
Smirnov, W. I., 1977, “Lehrgang der höheren Mathematik,” VEB Deutscher Verlag der Wissenschaften, Berlin, Vol. IV, pp. 128–135.
Abramovitz, M., Stegun, I. A., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, 55 (tenth printing).
Dufrenoy, P., 1995, “Etude du Comportment Thermomecanique des Disques de Freins vis a vis Risques de Defaillance,” Ph.D. thesis, Universite des Science et Technologies de Lille, France.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford.
Cameron,  A., Gordon,  A. N., and Symm,  G. T., 1965, “Contact Temperatures in Rolling/Sliding Surfaces,” Proc. R. Soc. London, Ser. A, 286, pp. 45–61.
Ling,  F. F., and Mow,  V. C., 1965, “Surface Displacement of a Convective Elastic Half-Space Under an Arbitrarily Distributed Fast-moving Heat Source,” ASME J. Basic Eng., 87, pp. 729–734.
Gecim,  B., and Winer,  W. O., 1985, “Transient Temperatures in the Vicinity of an Asperity Contact,” ASME J. Tribol., 107, pp. 333–340.


Grahic Jump Location
Dimensionless surface temperature θ̃1 as a function of the reduced dimensionless surface coordinate h̃ξ. The numbers attached to the curves are the values of the dimensionless heat convection coefficient h̃.
Grahic Jump Location
Coordinate system fixed to the wheel at the contact interface




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In