0
TECHNICAL PAPERS

Groove Effects on Thrust Washer Lubrication

[+] Author and Article Information
To Him Yu, Farshid Sadeghi

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-1288

J. Tribol 123(2), 295-304 (Apr 11, 2000) (10 pages) doi:10.1115/1.1308014 History: Received November 24, 1999; Revised April 11, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fogg,  A., 1949, “Fluid Film Lubrication of Parallel Thrust Surface,” Proc. Inst. Mech. Eng., 55, p. 49.
Shaw,  M. C., 1947, “An Analysis of the Parallel-Surface Thrust Bearing,” Trans. ASME, 69, p. 381.
Cope,  W. F., 1949, “The Hydrodynamical Theory of Film Lubrication,” Proc. R. Soc. London, Ser. A, 197, p. 201.
Cameron,  A., and Wood,  W. L., 1958, “Parallel-Surface Thrust Bearing,” Trans. Am. Soc. Lubric. Eng., 2, p. 256.
Currie,  I. G., Brockley,  C. A., and Dvorak,  F. A., 1965, “Thermal Wedge Lubrication of Parallel Surface Thrust Bearings,” Trans. ASME J. Basic Eng., 87, pp. 823–830.
Cameron,  A., 1960, “New Theory for Parallel Surface Thrust Bearing,” Engineering, London, 190, p. 904.
Dowson, D., and Hudson, J. D., 1963, “Thermo-hydrodynamic Analysis of the Infinite-bearing. Part II—The Parallel-Surface Bearing,” Paper 5, Proceedings Conference on Lubrication and Wear, The Institution of Mechanical Engineers, London.
Salama,  M. E., 1950, “The Effect of Macro-roughness on the Performance of Parallel Thrust Bearings,” Proc. Inst. Mech. Eng., 163, p. 149.
Hahn,  E. J., and Kettleborough,  G. F., 1968, “The Effects of Thermal Expansion in Infinitely Wide Slider Bearings—Free Thermal Expansion,” ASME J. Lubr. Technol., 90, pp. 233–239.
Ettles,  C. M. M., and Cameron,  A., 1965-66, “The Action of the Parallel-Surface Thrust Bearing,” Convention on Lubrication and Wear, Proc. Inst. Mech. Eng., 180 (Pt. 3K), pp. 61–75.
Malanoski,  S. B., and Pan,  C. H. T., 1965, “The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing,” ASME J. Basic Eng., 87, pp. 547–558.
Vohr,  J. H., and Chow,  C. Y., 1965, “Characteristics of Herringbone-Grooved Gas-Lubricated Journal Bearings,” Trans. ASME J. Basic Eng., 87, pp. 568–578.7.
James,  D. D., and Potter,  A. F., 1967, “Numerical Analysis of the Gas-Lubricated, Spiral-Groove Thrust Bearing-Compressors,” ASME J. Lubr. Technol., 89, pp. 439–444.
Lipschitz,  A., Basu,  P., and Johnson,  R. P., 1991, “A Bi-Directional Gas Thrust Bearing,” STLE Tribol. Trans., 34, No. 1, pp. 9–16.
Basu,  P., 1992, “Analysis of a Radical Groove Gas Face Seal,” STLE Tribol. Trans., 35, No. 1, pp. 11–20.
Reynolds,  O., 1886, “On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments Including on Experimental Determination of the Viscosity of Olive Oil,” Philos. Trans. R. Soc. London, 177, pp. 157–234.
Jakobsson,  B., and Floberg,  L., 1957, “The Finite Journal Bearings Considering Vaporization,” Trans. Chalmers Univ. Technol., Gothenburg, Sweden, 190, pp. 1–116.
Olsson,  K. O., 1965, “Cavitation in Dynamically Loaded Bearings,” Trans. Chalmers Univ. Technol., Gothenburg, Sweden, 308, pp. 1–60.
Elrod,  H. G., 1981, “A Cavitation Algorithm,” ASME J. Lubr. Technol., 103, pp. 350–354.
Etsion,  I., and Ludwig,  L. P., 1982, “Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings,” ASME J. Lubr. Technol., 104, pp. 157–163.
Dowson,  D., and Taylor,  C. M., 1979, “Cavitation in Bearings,” Annu. Rev. Fluid Mech., 190, pp. 1–116.
Brewe,  D. E., 1986, “Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings,” ASME J. Tribol., 108, pp. 628–638.
Pinkus,  O., and Lund,  J. W., 1981, “Centrifugal Effects in Thrust Bearings and Seals Under Laminar Conditions,” ASME J. Tribol., 103, pp. 126–136.
Floberg, L., 1964, “Cavitation in Lubricating Oil Films,” Cavitation in Real Liquids, R. Davies, ed., Elsevier, Amsterdam, pp. 138–146.
Payvar,  P., and Salant,  R. F., 1992, “A Computational Method for Cavitation in Wavy Mechanical Seal,” ASME J. Tribol., 114, pp. 199–204.
Patankar, Suhas V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Washington, D.C.
Hamrock, Bernard J., 1994, Fundamentals of Fluid Film Lubrication, McGraw-Hill, Inc., New York.

Figures

Grahic Jump Location
Thrust washer lubrication system
Grahic Jump Location
Schematic of thrust washer geometry
Grahic Jump Location
Schematic of various groove profiles
Grahic Jump Location
Dimensionless pad shape. NG=5, radius ratio R̄=0.65, groove depth ratio Δ=1.0, groove width ratio λ=700.0, curvature number Cn=2000.0, and orientation angle β=0 deg.
Grahic Jump Location
Dimensionless pressure profile. NG=5,R̄=0.65,Δ=1.0,λ=700.0,Cn=2000.0,γ=1,000,Re*=0.01, and β=0 deg.
Grahic Jump Location
Cavitation zone. NG=5,R̄=0.65,Δ=1.0,λ=700.0,Cn=2000.0,γ=1000,Re*=0.01, and β=0 deg.
Grahic Jump Location
The transient pressure distributions for various time steps. NG=5,Ri=42.25 mm,Ro=65.0 mm,Gw=25.0 mm,Gd=0.05 mm,t0=0.01 sec, and Fz=600.0 N.
Grahic Jump Location
Variation of film thickness and frictional torque as a function of time. NG=5,Ri=42.25 mm,Ro=65.0 mm,Gw=25.0 mm,Gd=0.05 mm,t0=0.01 sec, and Fz=600.0 N.
Grahic Jump Location
Variation of flow rates as a function of time. NG=5,Ri=42.25 mm,Ro=65.0 mm,Gw=25.0 mm,Gd=0.05 mm,t0=0.01 sec, and Fz=600.0 N.
Grahic Jump Location
Radial velocity component in the midfilm section. NG=5,β=0.0 deg,γ=1000,Re*=0.01,Cn=2000.0,λ=1000,Δ=1.0, and R̄=0.65.
Grahic Jump Location
The side view of tangential velocity. NG=5,β=0.0 deg,γ=1000,Re*=0.01,Cn=2000.0,λ=1000,Δ=1.0, and R̄=0.65.
Grahic Jump Location
Effect of the groove number on the load carrying capacity for different groove width ratios (λ). R̄=0.65,Δ=1.0,Cn=2000.0,γ=1,000,Re*=0.01, and β=0 deg.
Grahic Jump Location
Effect of the groove number on the side volume flow rate for different groove width ratios (λ). R̄=0.65,Δ=1.0,Cn=2000.0,γ=1,000,Re*=0.01, and β=0 deg.
Grahic Jump Location
Effect of the groove number on frictional torque for different groove width ratios (λ). R̄=0.65,Δ=1.0,Cn=2000.0,γ=1,000,Re*=0.01, and β=0 deg.
Grahic Jump Location
Effect of the groove depth on dimensionless load capacity for different NG.R̄=0.65,λ=200.0,Cn=1300.0,γ=4000,Re*=0.0025, and β=0 deg.
Grahic Jump Location
Effect of the groove depth on the side flow rate for different NG.R̄=0.65,λ=200.0,Cn=1300.0,γ=4000,Re*=0.0025, and β=0 deg.
Grahic Jump Location
Effect of the centrifugal effect on side leakage. NG=7,R̄=0.65,λ=200.0,Cn=1300.0,γ=4000,Re*=0.0025, and β=0 deg.
Grahic Jump Location
Effect of the groove depth on frictional torque for different NG.R̄=0.65,λ=200.0,Cn=1300.0,γ=4000,Re*=0.0025, and β=0 deg.
Grahic Jump Location
Effect of the groove profile on load carrying capacity. NG=5,R̄=0.65,Cn=2000.0,λ=1000,γ=1000.0,Re*=0.0, and β=0.0 deg.
Grahic Jump Location
Effect of the groove profile on frictional torque. NG=5,R̄=0.65,Cn=2000.0,λ=1000,γ=1000.0,Re*=0.0, and β=0.0 deg.
Grahic Jump Location
Effect of the washer characteristic number on load capacity for different NG.R̄=0.65,λ=200.0,Δ=0.5,Cn=1300.0,Re*=0.0025, and β=0 deg.
Grahic Jump Location
Effect of the washer characteristic number on frictional torque for different NG.R̄=0.65,λ=200.0,Δ=0.5,Cn=6500.0,Re*=0.001, and β=0 deg.
Grahic Jump Location
Load carrying capacity of different thrust bearings. γ=4000,R̄=0.65,Cn=1300.0,λ=200.0,NG=7, and β=0.0 deg.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In